\qquad
W-3201
Third Semester Examination 2021

M.Sc. (Mathematics)

Integration Theory and Functional Analysis (I)
Paper - I

SECTION - A
Very short answer type questions.(maximum 3 lines)
Q. 1 Define signed measure ?
Q. 2 What is Product measure ?
Q. 3 Define Equivalent norms?
Q. 4 Define bounded linear transformation?

SECTION - B

Short answer type questions with maximum word limit 150.
$(4 \times 5=20)$
Q. 5 Prove that a union of any countably collection of positive set is positive ?

OR

State and prove Hahn Decomposition theorem?
Q. 6 State and prove Fubini's theorem ?

OR
Prove that every absolutely continuos function F defined on (a, b) is of bounded variation ?
Q. 7 Let X be a normed linear space. The closed unit Ball $B=\{x \in X:\|x\|<1\}$ in X is compact if and only if X is finite dimensional?

Let X be a linear space and $\|\cdot\|_{1}$ and $\|.\|_{2}$ be two norms defined on X then these norms on X are equivalent iff their exist a positive constant m and M such that $\mathrm{m}\|x\|_{1}<\|x\|_{2}<\mathrm{M}\|x\|_{1} \forall x \in \mathrm{X}$
Q. 8 Let X, Y be normed linear space and $T: X \rightarrow Y$ a linear transformation. Then the following conditions are equivalent
i) $\quad \mathrm{T}$ is bounded.
ii) T is continuous.
iii) $\quad \mathrm{T}$ is continuous at one point.

OR

Define strong and weak convergence. In a finite dimensional normed linear space, strong and weak convergence coincide ?

SECTION - C

Long answer type questions with maximum word limit 500.
$(4 \times 12=48)$
Q. 9 State and prove Riesz Representation theorem?

OR

State and prove Radon Nikodym theorem?
Q. 10 Prove that every compact Baire set is Gs type ?

OR
A function f is of bounded variation if and only if it can be expressed as a difference of two monotonic functions both non-decreasing?
Q. 11 A non-empty subset of the normed linear space K^{n} is compact if and only if it closed and bounded ?

Let μ be a closed linear sub space of a nls X then the quotient space X / M is a nls with the norm $\|x+\mu\|=f\{\|x+m\|: m \in M\}$
Further, if X is a Banach space then so is X / M.
Q. 12 State and prove Fixed point theorem?

OR

Let $1<P<\infty$ and ${ }_{p}^{1}+\frac{1}{q}=1$
then Ip * is isometrically isemorphic to lq.
|| || || || || ||

